Solving stochastic programming problems using modified differential evolution algorithms
نویسندگان
چکیده
Stochastic (or probabilistic) programming (SP) is an optimization technique in which the constraints and/or the objective function of an optimization problem contain random variables. The mathematical models of these problems may follow any particular probability distribution for model coefficients. The objective here is to determine the proper values for model parameters influenced by random events. In this study, two modified differential evolution (DE) algorithms namely, LDE1 and LDE2 are used for solving SP problems. Two models of SP problems are considered; Stochastic Fractional Programming Problems andMultiobjective Stochastic Linear Programming Problems. The numerical results obtained by the LDE algorithms are compared with the results of basic DE, basic particle swarm optimization (PSO) and the available results from where it is observed that the LDE algorithms significantly improve the quality of solution of the considered problem in comparison with the quoted results in the literature.
منابع مشابه
Integrating Differential Evolution Algorithm with Modified Hybrid GA for Solving Nonlinear Optimal Control Problems
‎Here‎, ‎we give a two phases algorithm based on integrating differential evolution (DE) algorithm with modified hybrid genetic algorithm (MHGA) for solving the associated nonlinear programming problem of a nonlinear optimal control problem‎. ‎In the first phase‎, ‎DE starts with a completely random initial population where each individual‎, ‎or solution‎...
متن کاملModified FGP approach and MATLAB program for solving multi-level linear fractional programming problems
In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors i...
متن کاملModified Constrained Differential Evolution for Solving Nonlinear Global Optimization Problems
Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty para...
متن کاملGlobal Competitive Ranking for Constraints Handling with Modified Differential Evolution
Constrained nonlinear programming problems involving a nonlinear objective function with inequality and/or equality constraints introduce the possibility of multiple local optima. The task of global optimization is to find a solution where the objective function obtains its most extreme value while satisfying the constraints. Depending on the nature of the involved functions many solution metho...
متن کاملSolving fuzzy stochastic multi-objective programming problems based on a fuzzy inequality
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic or<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logic Journal of the IGPL
دوره 20 شماره
صفحات -
تاریخ انتشار 2012